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Abstract. The latest πN elastic scattering data are re-analysed to determine the coupling constant gc of
the charged pion, using the dispersion relation for the invariant amplitude B(+). Depending on the choice
of data-base, values g2

c/4π = 13.80 to 13.65 are obtained with errors of ±0.12. The mass difference between
charge states of ∆(1232) is M0 −M++ = 2.0±0.4 MeV, close to twice the mass difference between neutron
and proton. The difference in widths on resonance is Γ 0 − Γ++ = 3.8 ± 1.0 MeV. One may account for a
width difference of 4.5 MeV from phase space for decays and the extra channel ∆0 → γn.

1 Introduction

There have been long-running arguments over the mag-
nitude of the pion-nucleon coupling constant. It appears
that this argument can at last be resolved. The history will
be reviewed briefly below, so as to set the present work in
context. The dispute arises mainly from discrepancies in
the normalisation of dσ±/dΩ data and total cross sections
in the region below the peak of the ∆(1232). More recent
data clarify the experimental situation. The objective of
the present paper is to make a fresh determination of the
pion nucleon coupling constant g2

πNN̄
/4π with careful at-

tention to (i) Coulomb barrier corrections, (ii) mass and
width differences between ∆++ and ∆0. Hopefully, this
re-analysis will settle at least some of the disagreements
which have persisted for many years.

2 A brief historical review

Experiments at the CERN synchro-cyclotron in 1968-70
made precise measurements of πN scattering up to 290
MeV. Total cross sections for π±p were measured from
70 to 290 MeV, Carter et al. [1]; Bussey et al. reported
dσ±/dΩ from 88 to 292 MeV [2]; and the integrated
cross section σ0 for charge exchange from 90 to 290 MeV
was measured by Bugg et al. [3]. A partial wave anal-
ysis of these data was made [4] including the effects of
the Coulomb barrier and allowing for mass and width dif-
ferences of the ∆; these differences in mass and width
were conspicuous in the total cross section data. A value
g2

c/4π = 14.28 ± 0.16 was found using the unsubtracted
dispersion relation for the B+ amplitude [5]. This value
depended significantly on additional data then available
at 310 MeV. These have been superceded by a series of
experiments at PSI from 1975 to 1983 measuring differen-
tial cross sections and polarisations for elastic scattering

and charge exchange. The effects of the new data were
to reduce the width of the ∆ slightly and hence reduce
g2

c/4π, though there was no fresh analysis at the time.
The 1973 analysis used Coulomb barrier corrections

determined by solving a relativised Schroödinger equation
[6]. A treatment of Coulomb effects based on dispersion
relations was made by Tromborg et al. in 1977 [7].

Höhler and collaborators carried out extensive analy-
ses of πN elastic scattering up to ∼ 2 GeV using disper-
sion relations [8]. Comparisons are frequently made with
the work of Koch and Pietarinen [9]. However, it should
be realised that this analysis omitted the mass and width
differences between ∆++ and ∆0. Some of the discrepan-
cies subsequently reported between experiment and this
analysis arise from this point.

Measurements were made of dσ±/dΩ at TRIUMF by
Brack et al. [10]. They reported substantially lower nor-
malisation than the results of Bussey et al. in the mass
range below 140 MeV. This discrepancy persists to this
day.

De Swart and collaborators carried out a full analy-
sis [11–13] of NN elastic scattering up to 350 MeV and
reported considerably lower values of g2/4π. Their 1993
values are g2

0/4π = 13.56 ± 0.09 for coupling to π0 and
g2

c/4π = 13.52 ± 0.05 for coupling to charged pions [14].
Arndt and collaborators re-analysed πN data using

dispersion relation constraints and found g2
c/4π = 13.75±

0.15 [15]. However, this analysis omitted the total cross
section data of Carter et al., and floated the normalisa-
tions of the Bussey et al. differential cross sections. It also
treated the Coulomb barrier corrections in an approxi-
mate form. The main objective of the present analysis is
to restore the missing data and the full treatment of the
Coulomb barrier and see how much difference these make.

Recently, the Uppsala group has reported much higher
values of g2

c/4π from measurements of np charge exchange
differential cross sections: g2

c/4π = 14.52 ± 0.26 [16].
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Meanwhile there have been extensive measurements at
PSI and TRIUMF of differential cross sections and polari-
sations for π±p elastic scattering and charge exchange. All
published values up to 2002 are included here using the
SAID data base. The PSI measurement of the π−p scatter-
ing length via pionic X-rays [17] is particulary important
in providing an anchor point for the S-wave amplitude at
threshold. It removes many of the uncertainties concerned
with S-waves at low energies.

3 The B(+) dispersion relation

For πN scattering, the nucleon pole lies at s = m2
n, almost

midway between the physical regions for π+p (s > (mp +
mπ)2) and π−p (s < (mp − m2

π)); here mπ is the mass of
the charged pion. The determination of the πNN̄ coupling
constant is then a matter of interpolation between the
physical regions for these two processes. This interpolation
is more stable than the extrapolation which is required
in NN analyses from the physical region to the pole at
t = m2

π.
The B(+) dispersion relation contains a nucleon pole

term and an integral over the imaginary part of the am-
plitude. In this particular combination of amplitudes, S-
waves are suppressed by a large factor and the imaginary
part of B(+) is dominated by P33. The total cross sections
and normalisations of differential cross sections therefore
play an essential role in determining g2

c .

4 Ingredients in the analysis

Our new analysis has been done using the SAID program
[18] which constrains the data in the energy range up to
800 MeV using fixed t dispersion relations for |t| = 0
to 0.4 GeV2. However, we do not impose the GMO sum
rule. This relation relates the scattering length combina-
tion (a1 − a3) to the nucleon coupling constant and an
integral over total cross sections at all energies:

J =
1

4π2

∫ ∞

(mp+mπ)2
dk(σ−

tot − σ+
tot)/ν,

where k is the lab momentum of the pion and ν its total
lab energy. Bugg and Carter pointed out [19] that this
integral is subject to a sizeable correction for the effect of
the Coulomb barrier, which systematically enhances π−p
cross sections and suppresses π+p. Furthermore, there is
the danger that errors in cross sections at high energies
bias the analysis of the region near threshold.

The formalism for Coulomb barrier corrections is de-
scribed in the 1973 analysis of Carter et al. [4]. Here we
try using as alternatives the corrections evaluated by both
Tromborg et al. [7] and Bugg [6], in order to check the
magnitude of any differences between them. There is a
point here which deserves clarification. A superficial read-
ing of these two papers suggests very different numerical
values for corrections to π−p. However, the two analy-
ses adopt somewhat different approaches. The analysis of

Tromborg et al. includes allowance in the numerical val-
ues of Coulomb barrier factors Cij for the slightly different
final-state momenta between π−p → π−p and π−p → π0n.
The partial wave analysis of Carter al al. instead allows
specific phase space differences in these channels and ac-
cordingly introduces a small inelasticity into the P33 am-
plitude for π−p scattering. When the analysis is run with
the two alternative formalisms, results agree within one
standard deviation for P33 and better than this for other
partial waves. Numerical values of the Coulomb barrier
calculations are available up to 500 MeV. At higher ener-
gies, extended-source Coulomb barrier factors supplied by
Gibbs have been used [20].

There is a Coulomb term C13 which allows for explicit
mixing between I = 1/2 and 3/2; it arises from the fact
that the Coulomb potential acts in the π−p channel but
not in π0n. Including C13 into the analysis improves χ2

significantly, by ∼ 100. More exactly, the fit has 21786 de-
grees of freedom; without C13, χ2 = 44850 and including
it χ2 → 44752. It has the effect of increasing g2

c/4π by
0.03.

Our analysis also includes a mass difference between
∆++ and ∆0. This turns out to be essential.

There is an important detail concerning the total cross
sections of Carter et al. There was an uncertainty of
±0.25% in beam momenta. On both wings of the ∆, cross
sections vary rapidly with momentum; this introduces an
error several times larger than the errors quoted for cross
sections. We have added in quadrature to the experimen-
tal errors an error allowing for this uncertainty in beam
momentum. This correction has been in the SAID data-
base since 1980. For reference, values of these errors are
given in Table 1.

Table 1. Total cross sections with errors including uncertain-
ties in beam momentum

Lab energy σ+
tot (mb) Lab energy σ−

tot (mb)
(MeV) (MeV)

71.6 26.09 ± 0.62 76.7 15.80 ± 0.30
97.4 54.68 ± 0.66 96.0 23.12 ± 0.24
– – 114.4 33.74 ± 0.34
118.9 96.25 ± 1.25 119.9 38.44 ± 0.47
120.4 101.04 ± 1.53 127.2 44.48 ± 0.46
136.0 141.19 ± 1.42 140.9 55.35 ± 0.43
138.7 148.60 ± 1.42 – –
155.8 189.66 ± 1.08 159.6 67.90 ± 0.32
161.2 198.38 ± 1.09 164.7 70.26 ± 0.33
168.0 204.24 ± 0.85 172.6 70.74 ± 0.33
182.5 202.91 ± 1.03 184.6 69.76 ± 0.35
205.3 173.46 ± 1.27 208.9 59.43 ± 0.43
228.5 134.81 ± 1.32 232.6 47.06 ± 0.42
254.1 100.63 ± 0.97 255.4 38.46 ± 0.29
282.8 73.82 ± 0.91 290.1 29.97 ± 0.26
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5 The essential discrepancy in data

The present status of the phase shift analysis may be sum-
marised very simply. Most data sets contribute close to
χ2 = 1 per point (when analysed without the dispersion
relation constraint). There are few problems in fitting the
shapes of differential cross sections or polarisations.

However, there is a well known discrepancy in data
in the mass range below 145 MeV. One one side are the
total cross sections σ+

tot and σ−
tot of Carter et al. [3] and the

normalisations of differential cross sections of Bussey et al.
[2]. On the other side are the normalisations of differential
cross sections of Brack et al. [10]. The shapes of differential
cross sections from both Bussey et al. and Brack et al.
may both be fitted adequately, but there are differences
in normalisation.

There are faults here on both sides. The π−p total cross
section measurement of Carter et al. at the lowest energy
76.7 MeV is 7.5 standard deviations too high to fit the
shape of the ∆. That can be seen in Fig. 2b of the 1973
phase shift analysis of Carter et al. [6]; the 76.7 MeV point
lay well above an effective range formula for P33. The next
point at 96.0 MeV lies suspiciously high by 3.8 standard
deviations. We therefore reject both these π−p total cross
sections at 76.7 and 96 MeV. There is no difficulty for
π+p.

It is a matter of conjecture where the problem lies with
the two π−p points. The most likely explanation arises
from π → µ decays in the region of the target. At these
low momenta, pions decay faster than they interact. There
is a Jacobean peak in the decay angular distribution at a
transverse momentum of 40 MeV/c. Energy loss in the
full target is greater than in the empty target, increasing
the decay rate. A correction is needed for this in the ex-
trapolation to zero solid angle in the total cross section
determination and may have been underestimated. The
problem is worse for π− than for π+ because (a) elastic
cross sections for π− are lower than for π+ by about a
factor 9, (b) the beam size was somewhat larger for π−
than for π+.

Apart from this, there is one further discrepancy
within CERN Data. At 263.7 MeV, the normalisation of
Bussey et al. dσ−/dΩ data is ∼ 5% too low to agree with
the difference between σ−

tot and σ0. There is no problem
with the total cross section data at this energy or with π+p
data. It is therefore desirable to free the normalisation of
dσ−/dΩ at this single energy.

Otherwise, normalisations of Carter et al. total cross
sections are internally consistent with the integrated dif-
ferential cross sections of Bussey et al. added to σ0. This
provides a valuable check on resonance. There, partial
waves other than P33 contribute < 5% of the π+p total
cross section and only 10% of the π−p total cross section.
The small partial waves are accurately determined from
polarisation data via interference with P33. On resonance,
the P33 cross section is given by 8π/k2, leaving no freedom
in the absolute normalisation. The data satisfy this check
within experimental errors of typically 0.5%. Of course, it
is still possible that normalisation errors develop at lower
momenta. Incidentally, the data of Pedroni et al. [21] show

3 standard devations disagreements on resonance with this
check, despite their larger errors.

The relative normalisations of Brack et al. dσ±/dΩ
data are lower than those of CERN data by amounts up
to ∼ 10% in the mass range below 140 MeV.

This normalisation discrepancy affects primarily P33
and hence g2

c ; there are also small effects on the π±p scat-
tering lengths. In order to estimate systematic errors aris-
ing from the choice of data set, we consider two extremes.
In Fit I, the total cross sections of Carter al al. are removed
and the normalisations of Bussey et al are floated; data of
Brack et al. are fitted according to published normalisa-
tions. In fit II, the procedure is reversed: normalisations
of Brack et al. data and total cross sections of Pedroni et
al. are floated; the published normalisations of Bussey et
al. are retained and the total cross sections of Carter et al
are fitted. In both cases, charge exchange cross sections of
Bugg et al. are fitted, since these are the main source of
information on P13. In both cases, normalisations of dif-
ferential cross sections of Frank et al.[22] and Bertin et al
[23] are floated freely. The normalisation of the Frank et
al. differential cross sections is low on average by 9% and
the normalisation of Bertin et al. data is high on average
by 12.4%.

6 Results

In Fit I (without Carter et al. and Bussey et al. normalisa-
tions), g2

c/4π optimises at 13.65. In fit II (floating Brack et
al. data), g2

c/4π optimises at 13.80. In both cases, purely
statistical errors are extremely small. If one uses the dif-
ference between the two results as a guide to systematic
errors and attributes equal errors to both experiments,
the systematic error on each is ∼ ±0.10. Table 2 displays
mean χ2 per point for various data sets.

The normalisations of Brack et al. for dσ+/dΩ in fit I
give a large χ2 of 4.17 per energy, even though the con-
straints on normalisation from the CERN data have been
dropped. The problem is worst at 66.8 MeV where the fit-
ted normalisation is 7% low, with a quoted error of 2.0%;
at 86.8 MeV, it is low by 5% with a quoted error of 1.4%.
What constrains these normalisations are the PSI X-ray
data at threshold. In fit II, these discrepancies in normal-
isation increase to 11% and 7% respectively.

This discrepancy is apparent from the phase shift
analysis of Fettes and Matsinos [24]. They analyse only
data below 100 MeV and find a π+p scattering length
a3 = (0.077 ± 0.003)m−1

π , compared with the value
0.0885+0.0010

−0.0021m
−1
π from X-ray data.

The χ2 for the normalisation of Brack et al. dσ−/dΩ
data is also quite high: 2.74 per energy. The problems
in fit I are worst at 117.1 MeV, where the normalisation
contributes a χ2 of 15.85; at 66.8 and 87.5 MeV, it con-
tributes 5.4 and 5.2 to χ2. At 45 MeV, χ2 for the π−p
differential cross section is 8.30 per point. In Fit II, where
CERN data are used with their published normalisations,
the fitted normalisations of Brack et al. π−p data are in
the range 0.86 to 0.95 for all energies from 117.1 MeV
downwards.
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Table 2. Mean values of χ2 per point in fits I and II

Data set χ2 fit I χ2 fit II

Bugg et al. σ0 0.52 0.87
Bussey et al, dσ+/d Ω 1.27 1.13
Bussey et al, dσ−/d Ω 1.49 1.93
normalisation, Brack et al. π+ 4.17 –
normalisation, Brack et al. π− 2.74 –
Brack et al. dσ+/d Ω 1.76 1.02
Brack et al. dσ−/d Ω 2.50 1.91
Pedroni et al. σ+

tot 1.51 –
Pedroni et al. σ−

tot 2.30 –
Carter et al, σ+

tot – 1.38
Carter et al., σ−

tot – 1.16
Joram et al., dσ+/dΩ 3.39 3.95
Joram et al., dσ−/dΩ 2.08 2.26
Wiedner et al., dσ−/dΩ 2.65 2.60
Hauser et al., dσ0/dΩ 4.36 4.45
Gordeev et al., dσ+/dΩ 5.71 5.74
Gordeev et al., dσ−/dΩ 4.38 4.27

It has often been remarked that σ−
tot data of Pedroni

et al. lie systematically lower than those of Carter et al.
below the ∆ resonance. On the other hand, their errors
are large and overlap almost everywhere with the more
precise data of Carter et al.

An escape route for the Brack et al. data is a possible
violation of charge independence, allowing greater free-
dom. However, Meissner [25] estimates from Chiral Per-
turbation Theory that violations of charge independence
in elastic scattering are unlikely to be above 1%. Meissner
concludes that the 7% violation of charge independence
proposed by Matsinos [26] appears unlikely.

The effect of this normalisation question is to make
the ∆ slightly narrower when the data of Brack et al.
are used. That leads to a lower value of g2

c/4π. Fit I,
favouring the Brack et al. data leads to g2

c/4π = 13.65; fit
II, favouring CERN data, leads to g2

c/4π = 13.80. How-
ever, this difference is now small because of the weight
of other data. The latest analysis reported by Pavan at
Menu 2001 [20] uses both CERN and Brack data and re-
ports g2

c/4π = 13.69 ± 0.07; this is slightly closer to fit I
because of the larger number of points in the Brack et al.
data.

Apart from these normalisation questions, the lower
half of Table 2 shows a number of data sets with high χ2.
The data of Joram et al. [27] and Weidner et al. [28] are
mostly in the Coulomb interference region. The problem
with the Joram et al. data lies in the shape of the differ-
ential cross sections; for Wiedner et al. data the problem
is that the normalisation is 10% high.

There are also high χ2 for the data of Hauser et al. [29]
and Goreev et al. [30]. These are not normalisation prob-
lems: it appears that errors have been underestimated.
However, removing these data from the fit has little ef-
fect.

Table 3. Scattering lengths in units of m−1
π

Fit I Fit II

a3 −0.0847 −0.0872
a1 0.170 0.173
2a1 + a3 0.255 0.259
a1 − a3 0.255 0.260
a1 + 2a3 0.001 −0.001

6.1 Errors from Coulomb barrier corrections

There is some model dependence in Coulomb barrier cor-
rections. Tromborg et al. include in their description of
driving forces only the dominant nucleon exchange. Bugg
[6] includes in addition σ, ρ and ∆ exchanges. His results
are ∼ 25% lower in magnitude. Gashi et al. [31] evaluate
corrections only up to 100 MeV. All work is subject to
some systematic uncertainty in the σ interaction.

As an estimate of systematic errors from Coulomb bar-
rier corrections, we take the difference between those of
Tromborg et al. and Bugg. The former leads to the values
of g2

c/4π quoted above; the latter gives values of g2
c/4π

which are systematically lower by 0.06. Adding this error
in quadrature to the systematic error arising from choice
of data set, the overall systematic error is about ±0.12 for
g2

c/4π.

6.2 Scattering lengths

S-wave scattering lengths for fits I and II are shown in
Table 3. Errors are systematic and are about 0.003m−1

π .
Fit II is closer to the X-ray result: 2a1 + a3 = 0.2649 ±
0.0024m−1

π . The TRIUMF data try to pull the π−p scat-
tering length to lower values. Both fits reproduce within
errors the current algebra result that the symmetric com-
bination of scattering lengths is zero.

6.3 Mass and width differences for the ∆

Fitted masses and widths of ∆0 and ∆++ and their differ-
ences are shown in Table 4 for both fits. All these values
are after applying the correction for the Coulomb barrier.
The masses are evaluated where the π±p phase shifts go
through 90◦. The mass difference is consistent with twice
the mass difference between neutron and proton. We re-
mark also that Pedroni et al [21] use deuterium data to
find π−n cross sections; they give M(∆−)−M(∆++) = 3.9
MeV (no error quoted).

These differences in mass and width are visible by eye
in the total cross sections of Carter et al.; an illustration of
the difference in the Chew Low plot between π+p and π−p
is shown in Fig. 2b of [4]. However, the differences in mass
and width are also required in fit I and are therefore clearly
required also by differential cross section and polarisation
data.

Differences in width evaluated where the π±p phase
shift goes through 90◦ are 1.16 ± 1.3 MeV for fit I and
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Table 4. Masses and widths for the ∆ from fits I and II

Fit I Fit II

M(∆++) 1231.45 ± 0.3 MeV 1231.0 ± 0.3 MeV
M(∆0) 1233.6 ± 0.3 MeV 1232.85 ± 0.3 MeV
M(∆0) − M(∆++) 1.86 ± 0.4 MeV 2.16 ± 0.4 MeV
Γ (∆++) 114.8 ± 0.9 MeV 115.0 ± 0.9 MeV
Γ (∆0) 116.4 ± 0.9 MeV 118.3 ± 0.9 MeV
Γ (∆0) − Γ (∆++) 1.6 ± 1.3 3.3 ± 1.3

3.3 ± 1.3 MeV for fit II. We now examine how to ac-
count for these differences in width. To first approxima-
tion, the width may be parametrised as proportional to
k3/(1 + k2R2), where k is the decay momentim and R is
an effective radius for the centrifugal barrier, taken to be
0.8 fm. Because k is larger in ∆0 → nπ0 than for decay
to π−p, the width is larger. Allowing for the branching
ratio 2 : 1 to these channels, one expects this phase space
difference to make Γ 0 larger than Γ++ by 0.8 MeV for
a given πp mass. However, in Table 4, Γ 0 is evaluated
at a mass which is higher by 2 MeV than that for Γ++.
This contributes a further 2.6 MeV to Γ 0. Thirdly, the
∆0 has an extra width of 1.1 MeV for the γn channel.
Adding these three effects, the expected width difference
is 4.3 MeV. This estimate is close to Pilkuhn’s estimate
of 4.6 MeV [32]. These estimates are consistent with the
observed difference in widths in fit II. We remark that the
P33 phase shift is not sensitive to the total cross section
near resonance. It is mostly sensitive near half-height of
the resonance, when the P33 phase shift is close to 45 or
135◦. Hence the width is sensitive to the formula used to
parametrise the phase shift as a function of mass. Here,
simple spline fits are used in the SAID program.

Kruglov [33] reports an independent Gatchina analysis
of πN partial waves with the results:

M0 = 1233.1 ± 0.3 MeV (1)
M++ = 1230.5 ± 0.2 MeV (2)

M0 − M++ = 2.6 ± 0.4 MeV (3)
Γ 0 − Γ++ = 5.1 ± 1.0 MeV. (4)

From their original total cross section data, Carter et al.
found Γ 0 − Γ++ = 6.4 ± 1.8 MeV. We consider all these
values consistent in view of the different formulae used in
different analyses.

7 Conclusions

From the B(+) unsubtracted dispersion relation, accu-
rate values of g2

c/4π may be determined. The limitation
at present is the systematic discrepancy between CERN
and TRIUMF data below 145 MeV, although the addi-
tion of other data today reduces the effect of the dis-
crepancy to quite a small value. The CERN data prefer
g2

c/4π = 13.80 ± 0.12 and the TRIUMF data g2
c/4π =

13.65 ± 0.12. These errors include systematic uncertain-
ties of ±0.06 from uncertainties in the Coulomb barrier

corrections. Normalisations of TRIUMF data are poorly
fitted even when the normalisations of CERN data are
floated.

The mass difference between ∆0 and ∆++ is consistent
with twice the mass difference between neutron and pro-
ton. The observed difference in width is consistent with
the effects of phase space and a 1.1 MeV width difference
due to the extra channel ∆0 → γn.
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